https://www.linkedin.com/feed/update/urn:li:activity:6572703037478051840 Let (x_n) be a sequence defined by $x_1 = 2$ and $x_{n+1} = \sqrt{x_n + 8} - \sqrt{x_n + 3}$, $\forall n \in \mathbb{N}$.

- **a**) Prove that (x_n) is convergent and find its limit.
- **b**) For each positive integer *n* prove that

$$n \leq x_1 + x_2 + \ldots + x_n \leq n+1$$

Solution by Arkady Alt, San Jose, California, USA.

a) Let
$$h(x) := \sqrt{x+8} - \sqrt{x+3} = \frac{5}{\sqrt{x+8} + \sqrt{x+3}}$$

Noting that h(x) strictly decrease on $(0,\infty)$ (calculus don't needed because $\sqrt{x+8} + \sqrt{x+3}$ strictly increase on $(0,\infty)$) and h(1) = 1 we can conclude that x = 1 is the only solution of equation h(x) = x on $(0,\infty)$.

We will prove that
$$\lim_{n \to \infty} x_n = 1$$
. Note that $|x_{n+1} - 1| = \left| 1 - \frac{5}{\sqrt{x_n + 8} + \sqrt{x_n + 3}} \right| \le \frac{|x_n - 1|}{\sqrt{x_n + 8} + \sqrt{x_n + 3}} + \frac{1}{\sqrt{x_n + 3}$