https://www.linkedin.com/feed/update/urn:li:activity:6572703037478051840 Let $\left(x_{n}\right)$ be a sequence defined by $x_{1}=2$ and $x_{n+1}=\sqrt{x_{n}+8}-\sqrt{x_{n}+3}, \forall n \in \mathbb{N}$.
a) Prove that $\left(x_{n}\right)$ is convergent and find its limit.
b) For each positive integer n prove that

$$
n \leq x_{1}+x_{2}+\ldots+x_{n} \leq n+1 .
$$

Solution by Arkady Alt, San Jose, California, USA.

a) Let $h(x):=\sqrt{x+8}-\sqrt{x+3}=\frac{5}{\sqrt{x+8}+\sqrt{x+3}}$.

Noting that $h(x)$ strictly decrease on $(0, \infty)$ (calculus don't needed because $\sqrt{x+8}+\sqrt{x+3}$ strictly increase on $(0, \infty)$) and $h(1)=1$ we can conclude that $x=1$ is the only solution of equation $h(x)=x$ on $(0, \infty)$.
We will prove that $\lim _{n \rightarrow \infty} x_{n}=1$. Note that $\left|x_{n+1}-1\right|=\left|1-\frac{5}{\sqrt{x_{n}+8}+\sqrt{x_{n}+3}}\right| \leq$ $\frac{\left|\sqrt{x_{n}+8}-3\right|+\left|\sqrt{x_{n}+3}-2\right|}{\sqrt{x_{n}+8}+\sqrt{x_{n}+3}} \leq \frac{\left|x_{n}-1\right|}{\sqrt{x_{n}+8}+\sqrt{x_{n}+3}}\left(\frac{1}{\sqrt{x_{n}+8}+3}+\frac{1}{\sqrt{x_{n}+3}+2}\right)<$
$\left|x_{n}-1\right| \cdot \frac{1}{\sqrt{8}+\sqrt{3}} \cdot\left(\frac{1}{\sqrt{8}+3}+\frac{1}{\sqrt{3}+2}\right)$. Since $\sqrt{8}+\sqrt{3}>4, \sqrt{8}+3>5$ and $\sqrt{3}+2>3$ then $\frac{1}{\sqrt{8}+\sqrt{3}} \cdot\left(\frac{1}{\sqrt{8}+3}+\frac{1}{\sqrt{3}+2}\right)<\frac{1}{4}\left(\frac{1}{5}+\frac{1}{3}\right)=\frac{2}{15}$ and, therefore, $\left|x_{n+1}-1\right|<\frac{2}{15} \cdot\left|x_{n}-1\right|, n \in \mathbb{N} \Leftrightarrow\left|x_{n}-1\right|<\left(\frac{2}{15}\right)^{n-1}\left|x_{1}-1\right|=\left(\frac{2}{15}\right)^{n-1}$.
Hence, $\lim _{n \rightarrow \infty}\left(x_{n}-1\right)=0 \Leftrightarrow \lim _{n \rightarrow \infty} x_{n}=1$.
b) Let $S_{n}:=x_{1}+x_{2}+\ldots+x_{n}, n \in \mathbb{N}$. We will prove using Math Induction that (1) $n \leq S_{n} \leq n+1$.

For $n=1$ the inequality obviously holds. Also, since $x_{2}=\sqrt{10}-\sqrt{5}<1$
$(\sqrt{10}<\sqrt{5}+1 \Leftrightarrow 10<6+2 \sqrt{5} \Leftrightarrow 2<\sqrt{5})$ we have $2<S_{2}<3$.
For the Step of Math Induction we have to do some preparations.
Let $h_{2}(x):=h(h(x))$ and $g(x):=x+h(x)$. Since $h(x)$ decrease on $(0, \infty)$ then $h_{2}(x)$ increase on $(0, \infty)$. Also $g(x)$ increase on $(0, \infty)$ as well. Indeed, for any $0<x_{1}<x_{2}$ we have $g\left(x_{2}\right)-g\left(x_{1}\right)=x_{2}-x_{1}+\sqrt{x_{2}+8}-\sqrt{x_{1}+8}-\left(\sqrt{x_{2}+3}-\sqrt{x_{1}+3}\right)=$ $x_{2}-x_{1}-\frac{x_{2}-x_{1}}{\sqrt{x_{2}+3}+\sqrt{x_{1}+3}}+\frac{x_{2}-x_{1}}{\sqrt{x_{2}+8}+\sqrt{x_{1}+8}}>\frac{\left(x_{2}-x_{1}\right)\left(\sqrt{x_{2}+3}+\sqrt{x_{1}+3}-1\right)}{\sqrt{x_{2}+3}+\sqrt{x_{1}+3}}>0$
Since $x_{2}<1$ and $x_{1}>1$ then for any $n \in \mathbb{N}$ assuming $x_{2 n}<1$ and $x_{2 n-1}>1$ we obtain $x_{2 n+2}=h_{2}\left(x_{2 n}\right)<h_{2}(1)=1$ and $x_{2 n+1}=h_{2}\left(x_{2 n-1}\right)>h_{2}(1)=1$
Thus, by Math Induction $x_{2 n}<1$ and $x_{2 n-1}>1$ for any $n \in \mathbb{N}$. Therefore, since $g(1)=1+\sqrt{1+8}-\sqrt{1+3}=2$ we obtain $x_{2 n}+x_{2 n+1}=g\left(x_{2 n}\right)<g(1)=2$, $x_{2 n-1}+x_{2 n}=g\left(x_{2 n-1}\right)>g(1)=2$. And now we ready to complete the proof of (1).
For any $n \geq 2$ assuming $k \leq S_{k} \leq k+1$ for $k=n-1, n$ we have:

1. If $n=2 m$ then $S_{n+1}=S_{n-1}+x_{2 m}+x_{2 m+1}<n+2$ and $S_{n+1}=S_{n}+x_{2 m+1}>n+1$;
2. If $n=2 m-1$ then $S_{n+1}=S_{n}+x_{2 m}>n+1$ and $S_{n+1}=S_{n-1}+x_{2 m-1}+x_{2 m}<n+2$.

Thus, the proof is complete.

